
Software Transactional
Memory: a solution to
concurrency problems

Duilio J Protti
National University of
Rosario, Argentina

December 6, 2005

2

Deadlock: is not a problem of concurrent
programming, but of one of its approaches

It appears in lock-based
models

Deadlock can be avoided
with careful usage

Or without using it at all...

3

Not using locks is the more
insteresting choice because...

No locks, no deadlocks

But without locks, it can be
handled concurrency?

Yes, it can, just another
mechanism is needed

4

Commit/Rollback mechanism: propose changes,
and drop it if they are not consistent

Participants involved does
not “own” a shared
resource

Every one works with a
copy of the shared
resource

If at the end they have seen
a consistent view of the
resource, changes are
made public

5

Lightweight Memory Transactions: different from
the “heavy” counterparts found in DB's

The idea of the
commit/rollback is taken
from the DB's

But the requirements are
different

(Persistency, replication,
fault tolerant, etc)

6

Software Transactional Memory: lightweight
memory transactions in software

Lightweight memory
transactions where first
proposed as a hardware
architecture

They didn't succeed

But with the current
technology is practical to
implement it in software

7

Limitation of previous STM
implementations: lack of composability

I.e: two trees t1 and t2, with
transactional operations
insert() and remove()

It want to be done
transaccionally:

{ x = remove(t1); insert(t2, x) }

Until recent, this does not
scale well

8

Solution: Composable Memory Transactions, a
composable STM model

Presented at the 2005 IBM Programming Languages Day

Implemented in Haskell (GHC 6.4)

It presents a modular (and composable) form to
represent atomic actions, even in the presence of
blocking ones

9

newTVar :: a -> STM (TVar a)newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM areadTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()writeTVar :: TVar a -> a -> STM ()
atomic :: STM a -> IO aatomic :: STM a -> IO a
orElse :: STM a -> STM a -> STM aorElse :: STM a -> STM a -> STM a
retry :: STM aretry :: STM a

Composable Memory Transactions use a set of
(composable) transaction combinators

atomic gives a way to execute two transactions in
sequence (as a transaction)

orElse allows to execute two transactions as
alternatives

10

Before to see CMT, let get a review of the
problems associated with locks

1) Deadlock: due to locks acquired in wrong order

2) Lost wakeups: some conditional variable is not notified
when changes occurs

3) Weak error recovery: lock's release in exception handlers

4) Tension between simplicity and scalability

5) They are not composable

11

Now let's take a look at how CMT works:
optimistic concurrency

atomicatomic

<body><body>

<body> is executed without
acquiring any lock

Every read and write within <body>
is made to a log which is private to
the thread involved

In particular, writes are made to the
log, not to shared memory

At the end, it try to commit. If it
can't, the transaction is re-executed

12

A fundamental part of CMT:
modular blocking

atomicatomic

<... retry; ...><... retry; ...>

retry() causes to leave the actual
attempt for the transaction, and the
same will be executed again from
the beginning (but not immediately)

The process will block waiting for
any change in any of the variables
readed by the transaction up to this
point

When somebody commit to any of
these variables, it wake up

13

Why this blocking is modular? Because of
the orElse semantics

<body1> is tried as a transaction,
but if it blocks, <body2> is tried as a
transaction

This allows to wait for many things
at once

Is the dream of a composable
select()

atomicatomic

<<body1><<body1>

 `orElse``orElse`

 <body2>><body2>>

14

LibCMT, an implementation of
Composable Memory Transactions

Implemented in C

Two datatypes are given: GTransaction and GTVar
Plus the operators of composition, atomic execution
and modular blocking
It does not require garbage collector nor special
memory allocators nor some particular thread model

http://libcmt.sourceforge.net

15

For every shared variable a transactional variable is
created (GTVar) to represent it

Every thread creates the transactions
(Gtransactions) in which it wants to be engaged

The actions of these transactions are performed by
code written as if the program were sequential, with
the difference that it access transactional variables
instead of shared variables

How to use CMT with LibCMT?

16

Simple usage example: integer
increment

void f (GTransaction *tr, gpointer user_data)
{

int *i;

i = g_transaction_read_tvar (tr, tvar_i);
*i = ++(*i);

}

void worker_thread (void *data)
{

...

tr = g_transaction_new (“Inc”, f, NULL);
g_transaction_do (tr, NULL);

}

17

Example of composition in sequence:
double integer increment

/* Same f() as previous */

void worker_thread (void *data)
{

...

tr = g_transaction_new (“Inc”, f, NULL);
tr2 = g_transaction_sequence (tr, tr);
g_transaction_do (tr2, NULL);
...

}

18

A note about retry's implementation:
non-local jumps

void h (GTransaction *tr, gpointer user_data)
{

int *i;

i = g_transaction_read_tvar (tr, tvar_i);
if (*i < N)

g_transaction_retry (tr);
...

}
It is not said what condition is expected, and blocking just may
happen (but not always)

Make the condition explicit would break composability and ease
of use. The library knows where to continue and who must be
notified about changes

19

Example of composition with alternatives: The
Dining Philosophers Problem

A transaction is created
which try to take two
adjacent forks

Then take_forks is created
as the 'orElse' composition
of five of that transactions

And that's all

20

Composition with alternatives: Dining
Philosophers

void take_pair (GTransaction *tr, gpointer user_data)
{

fork1 = g_transaction_read_tvar (tr, tforks[index]);
fork2 = g_transaction_read_tvar (tr, tforks[(index+1)%NP]);
if (fork1->in_use || fork2->in_use)

g_transaction_retry (tr);
fork1->in_use = fork2->in_use = TRUE;

}

void worker_thread (void *data)
{

take_forks = take_pair_tr[0];
for (i = 1; i < NP; i++)

take_forks = g_transaction_or_else (take_forks,
take_pair_tr[i]);

}

21

Coming back to the general STM, another
advantage is: it offers the most parallelism

A concurrent program can be seen as a parcial order of
elemental statements

Given a concurrent program, its “most parallel” version
is that which can be executed in all the possible
combinations given by that partial order (even the
combinations which leaves to inconsistencies)

The ideal would be to have the “most parallel” version
which is correct (from the point of view of concurrency)

22

STM offers, by design, the most parallelism
possible

A lock-based mechanism works “serializing” portions of
code (the critical regions)

This is done to avoid execution paths potentially incorrect.
The problem is that this can impose more restrictions than
needed. In particular when the critical regions are nested
(like in compound transactions)

However, STM allows in principle all the possible
executions, and then it forget the incorrect ones

It offers the most parallelism, always

23

In summary, lock-based mechanisms are not the
only way to handle concurrency

In particular, deadlock is
not an inherent problem
of concurrency

Lesson learned: to note
the difference between
the problems of an issue,
and the problems of its
solutions

Questions?

