
A Formal Connection between Security Properties
and JML Annotations

Work in progress with Marieke Huisman

Alejandro Tamalet
Radboud University

Nijmegen, The Netherlands

Tamalet - Radboud University 2

Introduction: The Goal

 Trusted devices (smart phones, PDA, smart cards)
need a way to ensure the security of applications.

 We want to enforce (at runtime) a certain property.
Ultimately, we would like to prove (statically) that it
holds.

 We will work with Java or Java-like sequential
programs.

Tamalet - Radboud University 3

Introduction: The Means

 One way to achieve this goal is to encode the
property as JML annotations

 JML connects runtime checking (jmlc) and proving
(ESC/Java2).

 This imposes restrictions on the kind of properties
we can express: only safety properties (no liveness).

Tamalet - Radboud University 4

Example: An applet protocol as an
automaton (Cheon and Perumendla)

init; (start; stop)+; destroy

init

start

stop

start

destroy

Tamalet - Radboud University 5

Example: The applet protocol specified in JML
(Cheon and Perumendla)

package .j ava appl et

publ i c cl ass {Appl et
 / * @ publ i c st at i c f i nal ghost i nt
 = 1 ,@ PRI STI NE
 = 2 ,@ I NI T
 = 3 ,@ START
 = 4 ,@ STOP
 = 5 ;@ DESTROY
 * /@

/ / @ publ i c ghost i nt = ;st at e PRI STI NE

/ / @ requi res == ;st at e PRI STI NE
/ / @ ensures == ;st at e I NI T
publ i c voi d () {i ni t
 / / @ set = ;st at e I NI T
 . . .
}

/ / @ requi res == | | == ;st at e I NI T st at e STOP
/ / @ ensures == ;st at e START
publ i c voi d () {st ar t
 / / @ set = ;st at e START
 . . .
}

/ / @ requi res == ;st at e START
/ / == ;@ ensur es st at e STOP
publ i c voi d () {st op
 / / @ set = ;st at e STOP
 . . .
}

/ / @ requi res == ;st at e STOP
/ / @ ensures == ;st at e DESTROY
publ i c voi d () {dest r oy
 / / @ set = ;st at e DESTROY
 . . .
}

. . .

Tamalet - Radboud University 6

Multi-Variable Automata (MVA)

 We want to keep the high level view of these
properties.

 Regular automata are not enough to express many
interesting properties. We use automata with
variables.

 An automaton specifies a property of a class called
the monitored class.

Tamalet - Radboud University 7

Transitions

 Transitions of an MVA have an event, a guard and
actions.

 The events can be entry to or exit of methods. We
distinguish between a normal exit and an
exceptional exit.

 Guards and actions may involve fields of the
monitored class or parameters of the method.
Actions can only update variables of the automaton.

Tamalet - Radboud University 8

Example: Embedded transactions

Q1

Q2

bt, t<N → skip

bt, t:=t+1

bt, skip

Q3

ct, t>0 →
skip

ct, t:=t-1

ct, skip

bt = beginTransaction()
ct = commitTransaction()
at = abortTransaction()
entry
exit normal
exit exceptional

Property: At most N embedded transactions.

t:=0

 Automaton:
Monitored class: transactions.java
Q = {Q1, Q2, Q3}
Σ = {bt, bt, bt, ct, ct, ct, at}
varsA = {(t, int, 0)}
varsP = {}

at, t >0 →
t:=t-1

Tamalet - Radboud University 9

Other properties

 Enforce and order in which methods are called: life
cycle or protocol of an object.

 Restrict the frequency of a particular method call.
Example: m() can be called at most one time.

 Method m1() can not or can only be called inside
method m2().

Tamalet - Radboud University 10

Characteristics of a MVA

 The automaton must be deterministic.

 We complete the transition function by adding an
error state. We call it halted.

 Since we work with safety properties, halted is a trap
state.

 We don't have accepted states.

Tamalet - Radboud University 11

Abstract correctness property

P = program (may already have annotations)

A = automaton describing a security property

|| = monitored by

≈ = equivalence relation

Assumptions: P does not throw nor catch JML exceptions

 A is “well formed” and “well behaved”

P || A ≈ ann_program(P, A)

Tamalet - Radboud University 12

Translation into JML... plus some code
transformations

 Some code transformations are needed to treat
exceptions. We have to enclose the body in a -t r y

-cat ch f i nal l y block.

 If no code transformations are allowed we must
restrict the expressiveness of the automata. We
would only be able to talk about entry to methods.

Tamalet - Radboud University 13

ann_program: Two step translation

 For the following algorithm, we focus more in its
correctness than in its actual implementation.

 For ease of verification, the translation is done in two
steps. In the first step we do some abstractions and
then we refine them in the second step.

Tamalet - Radboud University 14

Step 1 – 1: Add ghost variables

 New ghost variables are added to encode the
automaton.

 Control points (including halted): integers initialized to a
unique value.

 Current control point (cp): integer initialized to the value of
the initial control point.

 Variables of the automaton: their type and initial value are
provided by the automaton.

Tamalet - Radboud University 15

Step 1 – 1: Example

/ * @ publ i c st at i c f i nal ghost i nt
 = 0 ,@ HALTED
 1 = 1 ,@ Q
 2 = 2 ,@ Q
 3 = 3 ;@ Q
 * /@

/ / @ publ i c ghost i nt = 1 ;cp Q

/ / @ publ i c ghost i nt = 0 ;t

Tamalet - Radboud University 16

Step 1 – 2: Strengthen invariant

 The invariant is strengthened to assert that the
current control point has not reached the error state.

/ / @ publ i c i nvar i ant ! = ;cp hal t ed

Tamalet - Radboud University 17

Step 1 – 3: Annotate methods

/ / @ requi res pr e;
/ / @ ensures pos ;
m() {
 pre_set {
 / * @ annot at i ons r egar di ng
 ' * /m s ent r y @
 } body {
 ' m s body
 } pos_set {
 / * @ annot at i ons r egar di ng
 ' * /m s normal exi t @
 } exc_set {
 / * @ annot at i ons r egar di ng
 ' * /m s except i onal exi t @
 }
}

m()

assert pre & inv;
pre_set;

body;

!ex → assert
pos & inv;
pos_set;

ex →
assert inv;
exc_set;

Tamalet - Radboud University 18

Step 1 – 4: Translate events

 Each transition is translated independently of the
type of its event (entry, exit normal or exit
exceptional).

 We assume the existence of an i f statement that
works with ghost variables in the condition and in the
branches.

Tamalet - Radboud University 19

Step 1 – 4: Example at

/ * @ i f (== 1) {cp Q
 @ i f (> 0) {t
 @ set = – 1 ;t t
 @ set = 1 ;cp Q
 } @ el se {
 @ set = ;cp HALTED
 } @ el se i f (== 2) {cp Q
 @ set = ;cp HALTED
 } @ el se i f (== 3) {cp Q
 @ set = ;cp HALTED
 } @ el se { / / == cp HALTED
 @ set = cp HALTED
 }@
 * /@

/ * @ i f (== 1 > 0) {cp Q && t
 @ set = – 1 ;t t
 @ set = 1 ;cp Q
 } @ el se {
 @ set = ;cp HALTED
 }@
 * /@

Tamalet - Radboud University 20

Step 2 – 1: Refine if - 1

 The i f for ghost variables are translated into a
sequence of set statements using conditional
statements.

i f () {c
 set : = ;x a
 set : = ;y b
}

set : = ? : ;x c a x
set : = ? : ;y c b y

Tamalet - Radboud University 21

Step 2 – 1: Refine if - 2

 Two auxiliary ghost variables are used to ensure the
independence of the branches.

i f (== 1) {cp Q
 i f (>= 5) {x
 set = - 1 ;x x
 set = 2 ;cp Q
 } i f (< 0) {x
 set = +1 ;x x
 set = 1 ;cp Q
 } el se {
 set = ;cp HALTED
 }
}

set 1 = == 1 ;b cp Q
set 2 = 1 >= 5 ;b b && x
set = 2 ? - 1 : ;x b x x
set = 2 ? 2 : ;cp b Q cp
set 2 = 1 ! 2 < 0 ;b b && b && x
set = 2 ? +1 : ;x b x x
set = 2 ? 1 : ;cp b Q y
set 2 = 1 ! 2 ;b b && b
set = 2 ? : ;cp b HALTED cp

Tamalet - Radboud University 22

Step 2 – 2: Refine pre_set et al.

m() {

 / / @ ghost bool ean ;ex

 t ry {

 / / ;@ pr e_set

 / / @ asser t ! = ;cp hal t ed

 body

 }

 cat ch ()Except i on e {

 / / ;@ exc_set

 / / @ set = ex t rue;

 t hrow ;e

 } f i nal l y {

 / / @ i f (!) { ; } ex pos_exc

 }

}

Tamalet - Radboud University 23

Example: translation of the embedded
transactions

publ i c voi d () {begi nTr ansact i on

 / / @ ghost bool ean ;ex

 t ry {

 / / @ set = (== 1 <) ? 2 : ;cp cp Q && t N Q HALTED
 / / @ assert ! = ;cp HALTED
 body

 } cat ch (Except i on) {e

 / / @ set = (== 2) ? 1 : ;cp cp Q Q HALTED
 / / @ set = ex t rue;

 } f i nal l y {

 / / @ set = (! == 2) ? +1 : ;t ex && cp Q t t
 / / @ set = (! == 2) ? 1 : ;cp ex && cp Q Q HALTED

 }
}

Tamalet - Radboud University 24

Formalization

 Everything must be defined:
 Automatons and their operational semantics.
 (A subset of) Java programs with annotations and their

operational semantics (big step, based on Von Oheimb's
formalization).

 A semantics for monitored programs.
 A bisimulation relation.

Tamalet - Radboud University 25

PVS

 Provides an expressive specification language an
interactive proof checker and other tools for
managing and analysing specifications.

 Its logic is an extension of higher order logic with
support for predicate subtyping and dependent
types.

 Does not provide polymorphic types but theories are
parametrizable.

Tamalet - Radboud University 26

A subset of Java-like programs - 1

 We formalized the syntax and semantics of a subset
of Java relevant for our problem.

 Types: int, boolean, void, references.
 Exceptions: Throwable, NullPointer, JMLExc
 Expressions: method calls, assignments, etc.
 Statements: if, while, try-catch-finally, etc.
 Annotations: set, assert, requires, ensures, invariant.

Tamalet - Radboud University 27

A subset of Java-like programs - 2

 We did some typical simplifications.
 Methods have only one argument
 Local variables declared at the beginning

 No r et ur n instruction

 Some things where not modelled.
 Only basic things of the inheritance apparatus were

modelled (method lookup)
 Static fields, static overloading, initialization

Tamalet - Radboud University 28

Characteristics of the specification - 1

 To deal with termination, the semantics requires the
length of the derivation sequence.

 We have one parametric semantics that we
instantiate to get the behaviour of annotated
programs and (annotated) monitored programs.

Tamalet - Radboud University 29

Characteristics of the specification - 2

 The syntax of programs is described by a datatype
with mutually recursive subtypes:

 This allows us to have only one semantic function
instead of two mutually recursive functions: one for
expressions and one for statements.

[: +] : , Body Name TYPE DATATYPE WI TH SUBTYPES Expr St mt
 (: , :) : ? : Assi gn t ar get Name sour ce Expr Assi gn Expr
 (: , :) : ? : Whi l e t est Bool Expr body St mt Whi l e St mt

Tamalet - Radboud University 30

Characteristics of the specification - 3

 The functions passed as parameters to the
semantics theory to define der i ve need a way to do
their own computations.

 PVS does not provide built-in support for mutual
recursive functions. They are emulated by passing
functions as arguments.

(:) : = [der i ve_t ype n nat TYPE Ful l Pr ogr am →
 [, , , Body Ful l St at e Val Ful l St at e → [() bel l ow n →]]]bool

(:) : =der i ve_r ec_t ype n nat TYPE
 [: () k upt o n → ()]der i ve_t ype k

Tamalet - Radboud University 31

States

: = [# : , : #]Moni t or edPr ogr am TYPE mva MVA pr ogr am Pr ogr am

: = [- >] St or e TYPE Name Val

: = [# : , : #]ASt at e TYPE cp CP st A St or e

: = [# : [] , , : #]PSt at e TYPE ex l i f t Excpt f vs l vs St or e

: = [# : #]APSt at e TYPE PSt at e WI TH gvs St or e

: = [# : #]MPSt at e TYPE APSt at e WI TH ast at e ASt at e

Tamalet - Radboud University 32

The equivalence relation - 1

? () (: , :) : =MVA_model ed mp sA ASt at e sAP APSt at e bool ean

 ? () (,) MVA_cp_model ed mp sA sAP AND

 ? () () MVA_cps_model ed mp sAP AND

 ? (,)MVA_var s_model ed sA sAP

? (: , :) : =Pr ogr am_model ed sMP MPSt at e sAP APSt at e bool ean

 () = () pst at e sMP pst at e sAP AND

 ? (,)Pr ogr am_gvs_model ed sMP sAP

Tamalet - Radboud University 33

The equivalence relation - 2

() (: , :) : =hal t ed_i mpl i es_J MLExc mp sMP MPSt at e sAP APSt at e bool ean

 (()) = cp ast at e sMP hal t ed I MPLI ES

 (? ((())) ((())) =)up ex pst at e sAP AND down ex pst at e sAP J MLExc

() (: , :) : =r el at ed_st at es mp sMP MPSt at e sAP APSt at e bool ean

 () () wf _st at e mp sMP AND

 (()) () wf _st at e ann_pr ogr am mp sAP AND

 ? () (,) MP_model ed mp sMP sAP AND

 () (,)hal t ed_i mpl i es_J MLExc mp sMP sAP

Tamalet - Radboud University 34

Correctness property in PVS

 : cor r ect ness_of _ann_pr ogr am THEOREM

 () (: , :)FORALL mp mai n Met hod ar g i nt

 (: , :) :sMP MPSt at e sAP APSt at e

 () wel l _behaved_MP mp I MPLI ES

 () (,)r un_moni t or ed_pr ogr am mp mai n ar g

 () sMP I MPLI ES

 (()) (,)r un_annot at ed_pr ogr am ann_pr ogr am mp mai n ar g

 () sAP I MPLI ES

 () (,)r el at ed_st at es mp sMP sAP

Tamalet - Radboud University 35

The invariant

 : der i ve_mai nt ai ns_r el at ed_st at es THEOREM

 () (: , 1 , 2 :)FORALL mp b Body v v Val

 (1 , 2 : , 1 , 2 :)sMP sMP MPSt at e sAP sAP APSt at e

 (1 , 2 :) :n n nat

 () wel l _behaved_MP mp I MPLI ES

 r el at ed_st at es() (1 , 1) mp sMP sAP I MPLI ES

 () (, 1 , 1 , 2) (1) der i ve mp b sMP v sMP n I MPLI ES

 (der i ve ann_pr ogr am()) (, 1 , 2 , 2) (2) mp b sAP v sAP n I MPLI ES

 r el at ed_st at es () (2 , 2) 1 = 2mp sMP sAP AND v v

Tamalet - Radboud University 36

Sketch of the proof of step 1

 The initial states are equivalent.

 Prove der i ve_mai nt ai ns_r el at ed_st at es.

 The proof is by induction on the length of the
derivation sequence.

 The method call case is the interesting one. Here
is where we have to show that ann_pr ogr am is
correct.

 Prove cor r ect ness_of _ann_pr ogr am.

Tamalet - Radboud University 37

Advantages of having a formalization - 1

 Although the ideas are simple we found many
subtleties.

 asser t at the end of the pre_set.
 in the proof the - -t r y cat ch f i nal l y case is tricky.

Tamalet - Radboud University 38

Advantages of having a formalization - 2

 Makes all the requirements explicit.
 No clash between variable names of the automaton and

the monitored class.
 The evaluation of expressions appearing on guards or

actions can not have side effects nor throw exceptions.
 There must be an injective function from the set of control

points to i nt .

Tamalet - Radboud University 39

Future work

 Prove the correctness of the second step.

 Generate preconditions and postconditions.

 Prove that some properties can be checked
statically.

 Extend the propagation algorithm given by Mariela
Pavlova.

 Formalize it in PVS by extending this work and prove its
correctness.

Tamalet - Radboud University 40

Related work - 1

 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll.
From finite state machines to provably correct Java
card applets.

 Daan de Jong. Converting Midlet Navigation Graphs
into JML

 Jesús Ravelo and Erik Poll. Work in progress about
graph refinement.

Tamalet - Radboud University 41

Related work - 2

 Mariela Pavlova. Generation of JML specification for
Java card applications.

 Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke
Huisman and Jean-Louis Lanet. Enforcing high-level
security properties for applets.

 Yoonsik Cheon and Ashaveena Perumendla.
Specifying and checking method call sequences of
Java programs.

Tamalet - Radboud University 42

The end

Thanks!

Questions?

