A Formal Connection between Security Properties
and JML Annotations

Work in progress with Marieke Huisman

Alejandro Tamalet
Radboud University
Nijmegen, The Netherlands

Introduction: The Goal

Trusted devices (smart phones, PDA, smart cards)

need a way to ensure the of applications.
We want to (at runtime) a certain property.
Ultimately, we would like to (statically) that it
holds.

We will work with sequential

programs.

Tamalet - Radboud University 2

Introduction: The Means

One way to achieve this goal is to

JML connects runtime checking (jmlc) and proving
(ESC/Java2).

This imposes restrictions on the kind of properties
we can express: only (no liveness).

Tamalet - Radboud University 3

Example: An applet protocol as an

automaton (Cheon and Perumendila)

init; (start; stop)+; destroy

Tamalet - Radboud University 4

Example: The applet protocol specified in JML

(Cheon and Perumendia)

package j ava. appl et //@requires state == INIT || state == STOP;
//@ ensures state == START;
public class Applet { public void start() ¢
/+@ public static final ghost int //@ set state = START;
@ PRISTINE = 1,
@ INT = 2, J
@ START = 3,
@ STOP - 4, //@requires state == START;
@ DESTROY - s; //@ ensures state == STOP;
@ / public void stop() ¢

//@ set state = STOP;

/7@ public ghost int state = PRISTI NE;
J

//@requires state == PRISTI NE;

//@ ensures state == I[N T; //7@requires state == STOP;
public void init() ¢ //@ ensures state == DESTROY;
//@ set state = INT; public void destroy()

//@ set state = DESTROY;

Tamalet - Radboud University 5

Multi-Variable Automata (MVA)

We want to of these
properties.

to express many
iInteresting properties. We use

An automaton specifies a property of a class called
the

Tamalet - Radboud University 6

Transitions

of an MVA have an event, a guard and

actions.
The can be to or exit of methods. We
distinguish between a and an

and may involve fields of the
monitored class or parameters of the method.
Actions can only update variables of the automaton.

Tamalet - Radboud University 7

Example: Embedded transactions

Property: At most N embedded transactions.

: bt = beginTransaction()
bt, t<N = skip ct = commitTransaction()
at = abortTransaction()
entry
exit normal
exit exceptional

Automaton:
Monitored class: transactions.java
Q ={Q1, Q2, Q3}
2 = {bt, bt, bt, ct, ct, ct, at}
vars, = {(t, int, 0)}

varsp = {}

Tamalet - Radboud University 8

Other properties

Enforce and order in which methods are called:
or of an object.

Restrict the of a particular method call.
Example: m() can be called at most one time.

Method m1() can not or can only be called
method m2().

Tamalet - Radboud University 9

Characteristics of a MVA

The automaton must be

We the transition function by adding an
error state. We call it
Since we work with safety properties, halted is a

We don't have

Tamalet - Radboud University 10

Abstract correctness property

P = program (may already have annotations)
A = automaton describing a security property
|| = monitored by

=~ = equivalence relation

Assumptions: P does not throw nor catch JML exceptions
A is “well formed’ and “well behaved”

Tamalet - Radboud University 11

Translation into JML... plus some code

transformations

Some are needed to treat
exceptions. We have to enclose the body inatry-
catch-final | y block.

If no code transformations are allowed we must
of the automata. We
would only be able to talk about entry to methods.

Tamalet - Radboud University 12

ann_program: Two step translation

For the following algorithm, we focus more in its
than in its actual implementation.

For ease of verification, the translation is done in
. In the first step we do some and
then we them in the second step.

Tamalet - Radboud University 13

Step 1 — 1: Add ghost variables

New ghost variables are added to encode the
automaton.

Control points (including): integers initialized to a
unique value.

Current control point (cp): integer initialized to the value of
the initial control point.

Variables of the automaton: their type and initial value are
provided by the automaton.

Tamalet - Radboud University 14

Step 1 — 1: Example

/@ public static final ghost int
@ HALTED = o,
@ Q' =1,
@ (2 =2
@ @B = 3;
@ /

/7@ public ghost int cp = Qq;

/7@ public ghost int t = 0;

Tamalet - Radboud University 15

Step 1 — 2: Strengthen invariant

The to assert that the
current control point has not reached the error state.

/7@ public invariant cp != hal ted;

Tamalet - Radboud University 16

Step 1 — 3: Annotate methods

//@ requires pre;
/ /@ ensures pos;
ng) |
pre_set |
/*@ annotations regarding
ms entry @/
} body {
m s body
} pos_set {
/*@ annotati ons regardi ng
ms nornal exit @/
} exc_set {
/*@ annotations regarding
ms exceptional exit @/

assert pre & inv;
pre_set;

ex — lex — assert
assert inv; pos & inv;
exc_set; pos_set;

Tamalet - Radboud University 17

Step 1 — 4: Translate events

Each transition is translated of the
type of its event (entry, exit normal or exit

exceptional).

We assume the existence of an statement that
works with In the condition and in the

branches.

Tamalet - Radboud University 18

Step 1 — 4: Example

/+@if (cp == Q) /*@01f (cp == Q@ && t > 0) ¢
@ if (t > 0) { @ sett =1t - 1;
@ set t =t - 1; @ set cp = Q;
@ set cp = Q4; @] else {

@) else { @ set cp = HALTED;
@ set cp = HALTED @ }

@) else if (cp == Q) | @ /

@ set cp = HALTED;

@) else if (cp == @) {

@ set cp = HALTED;

@) else { s/ cp == HALTED

@ set cp = HALTED

@)

@ /

Tamalet - Radboud University

19

Step 2 — 1: Refine ' -1

The i f for ghost variables are translated into a
sequence of set statements using

i f
(¢ | set X := C? a: X;
set X : = a; — s ct b i
set y := b; v FY

)

Tamalet - Radboud University 20

Step 2 — 1: Refine ' -2

Two are used to ensure the
iIndependence of the branches.
if (cp == Q) { set b1 = cp == Q4;
if (x >= §) | set b2 = b1 && X >= §5;
set X = X-1; set x = b2 ? Xx-1 : X;
set cp = Q; set cp = b2 1 Q@ : cp;
boif (x < 0) | set b2 = b1 && !'bh2 && x < 0;
set X = X+1; set X = b2 ? Xx+1 : X;
set cp = Q; set cp = b2 Q : vy;
] el se | set b2 = b1 &% !b2;
set cp = HALTED; set cp = b2? HALTED : cp;

)
)

Tamalet - Radboud University 21

Step 2 — 2: Refine pre_set et al.

ng) { catch (Exception e) {
/7@ ghost bool ean ex; /7@ exc_set;
try { //@ set ex = true;
//@ pre_set; t hrow e;
/7@ assert cp !:= halted;) finally {
body /r@if (tex) [pos_exc;)

Tamalet - Radboud University 22

Example: translation of the embedded

transactions

publ i ¢ void begi nTransaction() {

/7@ ghost bool ean ex;

try |

//@set cp = (cp == Q@ &&t < N ? @ : HALTED
/7@ assert cp ! = HALTED;
body

} catch (Exception e) ({

cp == Q@) * Q : HALTED

/7@ set cp = (
true;

//@ set ex =

} finally {

//@set t = (lex && cp =
//@set cp = (!lex && Cp

Q)Y ? t+1 : t;
= Q@) * Q : HALTED

Tamalet - Radboud University 23

Formalization

Everything must be

Automatons and their operational semantics.

(A subset of) Java programs with annotations and their
operational semantics (big step, based on Von Oheimb's
formalization).

A semantics for monitored programs.
A bisimulation relation.

Tamalet - Radboud University 24

PVS

Provides an expressive specification language an
interactive proof checker and other tools for
managing and analysing specifications.

Its logic is an extension of higher order logic with
support for predicate subtyping and dependent
types.

Does not provide polymorphic types but theories are
parametrizable.

Tamalet - Radboud University 25

A subset of Java-like programs - 1

We formalized the syntax and semantics of a subset
of Java relevant for our problem.

Types: int, boolean, void, references.

Exceptions: Throwable, NullPointer, JMLEXxc
Expressions: method calls, assignments, etc.
Statements: if, while, try-catch-finally, etc.
Annotations: set, assert, requires, ensures, invariant.

Tamalet - Radboud University 26

A subset of Java-like programs - 2

We did some typical simplifications.

Methods have only one argument
Local variables declared at the beginning

No r et ur n instruction
Some things where not modelled.

Only basic things of the inheritance apparatus were
modelled (method lookup)

Static fields, static overloading, initialization

Tamalet - Radboud University 27

Characteristics of the specification - 1

To deal with , the semantics requires the
length of the derivation sequence.

We have one semantics that we
instantiate to get the behaviour of annotated
programs and (annotated) monitored programs.

Tamalet - Radboud University 28

Characteristics of the specification - 2

The IS described by a datatype
with mutually recursive subtypes:

Body[Nane: TYPE+]1: DATATYPE W TH SUBTYPES Expr, Stm
Assign(target: Nane, source: Expr): Assign? : EXpr
Whi l e(test: Bool Expr, body: Stnt): While? : Stmt

This allows us to have only one semantic function
instead of two mutually recursive functions: one for
expressions and one for statements.

Tamalet - Radboud University 29

Characteristics of the specification - 3

The functions passed as parameters to the

semantics theory to define deri ve need a way to do
their own computations.

PVS does not provide built-in support for mutual

recursive functions. They are emulated by passing
functions as arguments.

derive_type(n: nat): TYPE = [FullProgram —

[Body, FullState, Val, FullState = [bellown)y — booll]]
derive_rec_type(n: nat): TYPE -=

[k: upto(n)y — derive_type(k)]

Tamalet - Radboud University 30

Moni t oredProgram TYPE

Store: TYPE = [Nane ->

AState: TYPE

PState: TYPE [# eX:

APState: TYPE

MPState: TYPE APSt at

= [# nva: MVA, program Program #]

Val |

[# cp: CP, stA: Store =«

i ft[l Excptl, fvs, |lvs: Store #

PState W TH [» gvs: Store #

e WTH [» astate: AState #]

Tamalet - Radboud University

31

The equivalence relation - 1

MWA_nodel ed?(np)(sA: AState, sAP: APState): bool ean =
MWA_cp_nodel ed?(np)(sA, sAP) AND
MVA_cps_nodel ed?(np) (sAP) AND
MWA_vars_nodel ed?(sA, sAP)

Program.nodel ed?(sMP: MState, sAP: APState): bool ean =

pstate(sMP) = pstate(sAP) AND
Program. gvs_nodel ed?(sM, sAP)

Tamalet - Radboud University 32

The equivalence relation - 2

hal ted_i nplies_)] MLExc(np)(sMP: MPState, sAP: APState): bool ean -
cp(astate(sMP)) = halted | MPLIES

(up?(ex(pstate(sAP))) AND down(ex(pstate(sAP))) = J MLExc)

rel ated_states(np)(sMP: MState, sAP: APState): bool ean -
wf _state(np)(sMP) AND

wf _state(ann_program np))(sAP) AND
MP_nodel ed?(np) (sMP, sAP) AND

hal ted_i nplies_J MLExc({ np)(sM, sAP)

Tamalet - Radboud University 33

Correctness property in PVS

correctness_of _ann_program: THEOREM
FORALL ¢(np)(nain: Method, arg: int)
(sMP: MPState, sAP: APState):
wel | _behaved_MP(np) | MPLI ES
run_noni tored_prograni np) (nai n, arg)
(sMPy | MPLIES
run_annot at ed_prograni ann_progranm np))(nain, arg)
(SAP) | MPLIES
rel ated_states(np)(sM, sAP)

Tamalet - Radboud University 34

The Invariant

derive_naintains_rel ated_states : THEOREM
FORALL (np)(b: Body, vi, v2: Val)
(sMP1, sMP2: MPState, sAP1, sAP2: APState)
(ni, n2 : nat):
wel | _behaved_MP(npy | MPLI ES
(npy(sMP1, sAP1) | MPLIES
derive(nmp)(b, sMP1, vi, sMP2)(ni) | MPLIES
deri ve((mp))(b, sAP1, v2, sAP2)(n2) | MLIES
(np)(sMP2, sAP2y AND vi = v2

Tamalet - Radboud University 35

Sketch of the proof of step 1

The initial states are equivalent.
Prove deri ve_nmai ntains_rel ated_states.

The proof is by induction on the length of the
derivation sequence.

The method call case is the interesting one. Here
IS where we have to show that ann_program is
correct.

Prove correctness_of _ann_program

Tamalet - Radboud University 36

Advantages of having a formalization - 1

Although the ideas are simple we found many

assert atthe end of the pre_set.
in the proof the try-catch-fi nal | y case is tricky.

Tamalet - Radboud University 37

Advantages of having a formalization - 2

Makes all the explicit.

No clash between variable names of the automaton and
the monitored class.

The evaluation of expressions appearing on guards or
actions can not have side effects nor throw exceptions.

There must be an injective function from the set of control
pointsto I nt.

Tamalet - Radboud University 38

Prove the correctness of the
Generate preconditions and postconditions.
Prove that some properties can be checked

Extend the propagation algorithm given by Mariela
Pavlova.

Formalize it in PVS by extending this work and prove its
correctness.

Tamalet - Radboud University 39

Related work - 1

Engelbert Hubbers, Martijn Oostdijk, and Erik Poll.
From finite state machines to provably correct Java
card applets.

Daan de Jong. Converting Midlet Navigation Graphs
into JML

Jesus Ravelo and Erik Poll. Work in progress about
graph refinement.

Tamalet - Radboud University 40

Related work - 2

Mariela Pavlova. Generation of JML specification for
Java card applications.

Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke
Huisman and Jean-Louis Lanet. Enforcing high-level
security properties for applets.

Yoonsik Cheon and Ashaveena Perumendia.
Specifying and checking method call sequences of
Java programs.

Tamalet - Radboud University 41

Thanks!

Tamalet - Radboud University 42

