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Introduction: The Goal

 Trusted devices (smart phones, PDA, smart cards) 
need a way to ensure the security of applications.

 We want to enforce (at runtime) a certain property. 
Ultimately, we would like to prove (statically) that it 
holds.

 We will work with Java or Java-like sequential 
programs.
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Introduction: The Means

 One way to achieve this goal is to encode the 
property as JML annotations

 JML connects runtime checking (jmlc) and proving 
(ESC/Java2).

 This imposes restrictions on the kind of properties 
we can express: only safety properties (no liveness).
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Example: An applet protocol as an 
automaton (Cheon and Perumendla)

init; (start; stop)+; destroy

init

start

stop

start

destroy
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Example: The applet protocol specified in JML 
(Cheon and Perumendla)

package .j ava appl et

publ i c cl ass  {Appl et
  / *  @ publ i c st at i c f i nal  ghost  i nt
        = 1 ,@ PRI STI NE
        = 2 ,@ I NI T
        = 3 ,@ START
        = 4 ,@ STOP
        = 5 ;@ DESTROY
    * /@

/ /  @ publ i c ghost  i nt   = ;st at e PRI STI NE

/ /  @ requi res  == ;st at e PRI STI NE
/ /  @ ensures  == ;st at e I NI T
publ i c voi d ( )  {i ni t
  / /  @ set   = ;st at e I NI T
  . . .
}

/ /  @ requi res  ==  | |   == ;st at e I NI T st at e STOP
/ /  @ ensures  == ;st at e START
publ i c voi d ( )  {st ar t
  / /  @ set   = ;st at e START
  . . .
}

/ /  @ requi res  == ;st at e START
/ /    == ;@ ensur es st at e STOP
publ i c voi d ( )  {st op
  / /  @ set   = ;st at e STOP
  . . .
}

/ /  @ requi res  == ;st at e STOP
/ /  @ ensures  == ;st at e DESTROY
publ i c voi d ( )  {dest r oy
  / /  @ set   = ;st at e DESTROY
  . . .
}

. . .



Tamalet - Radboud University 6

Multi-Variable Automata (MVA)

 We want to keep the high level view of these 
properties.

 Regular automata are not enough to express many 
interesting properties. We use automata with 
variables.

 An automaton specifies a property of a class called 
the monitored class.
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Transitions

 Transitions of an MVA have an event, a guard and 
actions.

 The events can be entry to or exit of methods. We 
distinguish between a normal exit and an 
exceptional exit.

 Guards and actions may involve fields of the 
monitored class or parameters of the method. 
Actions can only update variables of the automaton.
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Example: Embedded transactions

Q1

Q2

bt, t<N → skip

bt, t:=t+1

bt, skip

Q3

ct, t>0  →
skip

ct, t:=t-1

ct, skip

bt = beginTransaction()
ct = commitTransaction()
at = abortTransaction()
entry
exit normal
exit exceptional

Property: At most N embedded transactions.

t:=0

      Automaton:
Monitored class: transactions.java
Q = {Q1, Q2, Q3}
Σ = {bt, bt, bt, ct, ct, ct, at}
varsA = {(t, int, 0)}
varsP = {}

at, t >0  →
t:=t-1
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Other properties

 Enforce and order in which methods are called: life 
cycle or protocol of an object.

 Restrict the frequency of a particular method call. 
Example: m() can be called at most one time.

 Method m1() can not or can only be called inside 
method m2().
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Characteristics of a MVA

 The automaton must be deterministic.

 We complete the transition function by adding an 
error state. We call it halted.

 Since we work with safety properties, halted is a trap 
state.

 We don't have accepted states.
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Abstract correctness property

P = program (may already have annotations)

A = automaton describing a security property

|| = monitored by

≈ = equivalence relation

Assumptions: P does not throw nor catch JML exceptions

                      A is “well formed” and “well behaved”

P || A ≈ ann_program(P, A)
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Translation into JML... plus some code 
transformations

 Some code transformations are needed to treat 
exceptions. We have to enclose the body in a -t r y

-cat ch f i nal l y block.

 If no code transformations are allowed we must 
restrict the expressiveness of the automata. We 
would only be able to talk about entry to methods.
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ann_program: Two step translation

 For the following algorithm, we focus more in its 
correctness than in its actual implementation.

 For ease of verification, the translation is done in two 
steps. In the first step we do some abstractions and 
then we refine them in the second step.
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Step 1 – 1: Add ghost variables

 New ghost variables are added to encode the 
automaton.

 Control points (including halted): integers initialized to a 
unique value.

 Current control point (cp): integer initialized to the value of 
the initial control point.

 Variables of the automaton: their type and initial value are 
provided by the automaton.
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Step 1 – 1: Example

/ *  @ publ i c st at i c f i nal  ghost  i nt
     = 0 ,@ HALTED
    1  = 1 ,@ Q
    2  = 2 ,@ Q
    3  = 3 ;@ Q
  * /@

/ /  @ publ i c ghost  i nt   = 1 ;cp Q

/ /  @ publ i c ghost  i nt   = 0 ;t
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Step 1 – 2: Strengthen invariant

 The invariant is strengthened to assert that the 
current control point has not reached the error state.

/ /  @ publ i c i nvar i ant   ! = ;cp hal t ed
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Step 1 – 3: Annotate methods

/ /  @ requi res pr e;
/ /  @ ensures pos ;
m( )  {
  pre_set  {
    / *   @ annot at i ons r egar di ng
        '   * /m s ent r y @
  }  body {
    '  m s body
  }  pos_set  {
    / *   @ annot at i ons r egar di ng
        '    * /m s normal exi t @
  }  exc_set  {
    / *   @ annot at i ons r egar di ng
        '    * /m s except i onal exi t @
  }
}

m()

assert pre & inv;
pre_set;

body;

!ex  → assert 
pos & inv;
pos_set;

ex  →
assert inv;
exc_set;
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Step 1 – 4: Translate events

 Each transition is translated independently of the 
type of its event (entry, exit normal or exit 
exceptional).

 We assume the existence of an i f  statement that 
works with ghost variables in the condition and in the 
branches.
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Step 1 – 4: Example at

/ *  @ i f  (  == 1 )  {cp Q
     @ i f  (  >  0 )  {t
       @ set   =  –  1 ;t t
       @ set   = 1 ;cp Q
     }  @ el se {
       @ set   = ;cp HALTED
   }  @ el se i f  (  == 2 )  {cp Q
     @ set   = ;cp HALTED
   }  @ el se i f  (  == 3 )  {cp Q
     @ set   = ;cp HALTED
   }  @ el se {  / /   == cp HALTED
     @ set   = cp HALTED
   }@
  * /@

/ *  @ i f  (  == 1    > 0 )  {cp Q && t
     @ set   =  –  1 ;t t
     @ set   = 1 ;cp Q
   }  @ el se {
     @ set   = ;cp HALTED
   }@
  * /@
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Step 2 – 1: Refine if - 1

 The i f  for ghost variables are translated into a 
sequence of set  statements using conditional 
statements.

i f  ( )  {c
  set   : = ;x a
  set   : = ;y b
}

set   : =  ?   :  ;x c a x
set   : =  ?   :  ;y c b y
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Step 2 – 1: Refine if - 2

 Two auxiliary ghost variables are used to ensure the 
independence of the branches.

i f  (  == 1 )  {cp Q
  i f  (  >= 5 )  {x
    set   = - 1 ;x x
    set   = 2 ;cp Q
  }  i f  (  <  0 )  {x
    set   = +1 ;x x
    set   = 1 ;cp Q
  }  el se {
    set   = ;cp HALTED
  }
}

set  1  =  == 1 ;b cp Q
set  2  = 1    >= 5 ;b b && x
set   = 2  ?  - 1  :  ;x b x x
set   = 2  ?  2  :  ;cp b Q cp
set  2  = 1   ! 2    <  0 ;b b && b && x
set   = 2  ?  +1  :  ;x b x x
set   = 2  ?  1  :  ;cp b Q y
set  2  = 1   ! 2 ;b b && b
set   = 2 ?   :  ;cp b HALTED cp
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Step 2 – 2: Refine pre_set et al.

m( )  {

  / /  @ ghost  bool ean ;ex

  t ry {

    / /  ;@ pr e_set

    / /  @ asser t   ! = ;cp hal t ed

    body

  }

 cat ch (  )Except i on e  {

    / /  ;@ exc_set

    / /  @ set   = ex t rue;

    t hrow ;e

  }  f i nal l y {

    / /  @ i f  ( ! )  {  ;  }     ex pos_exc

  }

}
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Example: translation of the embedded 
transactions

publ i c voi d ( )  {begi nTr ansact i on

  / /  @ ghost  bool ean ;ex

  t ry {

    / /  @ set   = (  == 1     <  )  ?  2  :  ;cp cp Q && t N Q HALTED
    / /  @ assert   ! = ;cp HALTED
    body

  }  cat ch ( Except i on )  {e

    / /  @ set   = (  == 2 )  ?  1  :  ;cp cp Q Q HALTED
    / /  @ set   = ex t rue;

  }  f i nal l y {

    / /  @ set   = ( !    == 2 )  ?  +1  :  ;t ex && cp Q t t
    / /  @ set   = ( !    == 2 )  ?  1  :  ;cp ex && cp Q Q HALTED

  }
}
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Formalization

 Everything must be defined:
 Automatons and their operational semantics.
 (A subset of) Java programs with annotations and their 

operational semantics (big step, based on Von Oheimb's 
formalization).

 A semantics for monitored programs.
 A bisimulation relation.
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PVS

 Provides an expressive specification language an 
interactive proof checker and other tools for 
managing and analysing specifications.

 Its logic is an extension of higher order logic with 
support for predicate subtyping and dependent 
types.

 Does not provide polymorphic types but theories are 
parametrizable.
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A subset of Java-like programs - 1

 We formalized the syntax and semantics of a subset 
of Java relevant for our problem.

 Types: int, boolean, void, references.
 Exceptions: Throwable, NullPointer, JMLExc
 Expressions: method calls, assignments, etc.
 Statements: if, while, try-catch-finally, etc.
 Annotations: set, assert,  requires, ensures, invariant.
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A subset of Java-like programs - 2

 We did some typical simplifications.
 Methods have only one argument
 Local variables declared at the beginning

 No r et ur n instruction

 Some things where not modelled.
 Only basic things of the inheritance apparatus were 

modelled (method lookup)
 Static fields, static overloading, initialization
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Characteristics of the specification - 1

 To deal with termination, the semantics requires the 
length of the derivation sequence.

 We have one parametric semantics that we 
instantiate to get the behaviour of annotated 
programs and (annotated) monitored programs.
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Characteristics of the specification - 2

 The syntax of programs is described by a datatype 
with mutually recursive subtypes:

 This allows us to have only one semantic function 
instead of two mutually recursive functions: one for 
expressions and one for statements.

[ :  +] :     ,  Body Name TYPE DATATYPE WI TH SUBTYPES Expr St mt
  ( :  ,  :  ) :  ?  :  Assi gn t ar get Name sour ce Expr Assi gn Expr
  ( :  ,  :  ) :  ?    :  Whi l e t est Bool Expr body St mt Whi l e St mt
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Characteristics of the specification - 3

 The functions passed as parameters to the 
semantics theory to define der i ve need a way to do 
their own computations.

 PVS does not provide built-in support for mutual 
recursive functions. They are emulated by passing 
functions as arguments.

( :  ) :   = [  der i ve_t ype n nat TYPE Ful l Pr ogr am → 
  [ ,  ,  ,   Body Ful l St at e Val Ful l St at e  → [ ( )  bel l ow n → ] ] ]bool

( :  ) :   =der i ve_r ec_t ype n nat TYPE
  [ :  ( )  k upt o n → ( ) ]der i ve_t ype k
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States

:   = [ # :  ,  :   #]Moni t or edPr ogr am TYPE mva MVA pr ogr am Pr ogr am

:   = [  - > ]  St or e TYPE Name Val

:   = [ # :  ,  :   #]ASt at e TYPE cp CP st A St or e

:   = [ # :  [ ] ,  ,  :   #]PSt at e TYPE ex l i f t Excpt f vs l vs St or e

:   =   [ # :   #]APSt at e TYPE PSt at e WI TH gvs St or e

:   =   [ # :   #]MPSt at e TYPE APSt at e WI TH ast at e ASt at e
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The equivalence relation - 1

? ( ) ( :  ,  :  ) :   =MVA_model ed mp sA ASt at e sAP APSt at e bool ean

  ? ( ) ( ,  )  MVA_cp_model ed mp sA sAP AND

  ? ( ) ( )  MVA_cps_model ed mp sAP AND

  ? ( ,  )MVA_var s_model ed sA sAP

? ( :  ,  :  ) :   =Pr ogr am_model ed sMP MPSt at e sAP APSt at e bool ean

  ( )  = ( )  pst at e sMP pst at e sAP AND

  ? ( ,  )Pr ogr am_gvs_model ed sMP sAP
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The equivalence relation - 2

( ) ( :  ,  :  ) :   =hal t ed_i mpl i es_J MLExc mp sMP MPSt at e sAP APSt at e bool ean

  ( ( ) )  =  cp ast at e sMP hal t ed I MPLI ES

    ( ? ( ( ( ) ) )   ( ( ( ) ) )  = )up ex pst at e sAP AND down ex pst at e sAP J MLExc

( ) ( :  ,  :  ) :   =r el at ed_st at es mp sMP MPSt at e sAP APSt at e bool ean

  ( ) ( )  wf _st at e mp sMP AND

  ( ( ) ) ( )  wf _st at e ann_pr ogr am mp sAP AND

  ? ( ) ( ,  )  MP_model ed mp sMP sAP AND

  ( ) ( ,  )hal t ed_i mpl i es_J MLExc mp sMP sAP
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Correctness property in PVS

   :  cor r ect ness_of _ann_pr ogr am THEOREM

     ( ) ( :  ,  :  )FORALL mp mai n Met hod ar g i nt

           ( :  ,  :  ) :sMP MPSt at e sAP APSt at e

      ( )  wel l _behaved_MP mp I MPLI ES

      ( ) ( ,  )r un_moni t or ed_pr ogr am mp mai n ar g

                           ( )  sMP I MPLI ES

      ( ( ) ) ( ,  )r un_annot at ed_pr ogr am ann_pr ogr am mp mai n ar g

                           ( )  sAP I MPLI ES

        ( ) ( ,  )r el at ed_st at es mp sMP sAP
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The invariant

 :  der i ve_mai nt ai ns_r el at ed_st at es THEOREM

   ( ) ( :  ,  1 ,  2 :  )FORALL mp b Body v v Val

         ( 1 ,  2 :  ,  1 ,  2 :  )sMP sMP MPSt at e sAP sAP APSt at e

         ( 1 ,  2  :  ) :n n nat

    ( )  wel l _behaved_MP mp I MPLI ES

    r el at ed_st at es( ) ( 1 ,  1 )  mp sMP sAP I MPLI ES

    ( ) ( ,  1 ,  1 ,  2 ) ( 1 )  der i ve mp b sMP v sMP n I MPLI ES

    (der i ve ann_pr ogr am( ) ) ( ,  1 ,  2 ,  2 ) ( 2 )  mp b sAP v sAP n I MPLI ES

      r el at ed_st at es ( ) ( 2 ,  2 )   1  = 2mp sMP sAP AND v v
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Sketch of the proof of step 1

 The initial states are equivalent.

 Prove der i ve_mai nt ai ns_r el at ed_st at es.

 The proof is by induction on the length of the 
derivation sequence.

 The method call case is the interesting one. Here 
is where we have to show that  ann_pr ogr am is 
correct.

 Prove cor r ect ness_of _ann_pr ogr am.
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Advantages of having a formalization - 1

 Although the ideas are simple we found many 
subtleties.

 asser t  at the end of the pre_set.
 in the proof the - -t r y cat ch f i nal l y case is tricky.
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Advantages of having a formalization - 2

 Makes all the requirements explicit.
 No clash between variable names of the automaton and 

the monitored class.
 The evaluation of expressions appearing on guards or 

actions can not have side effects nor throw exceptions.
 There must be an injective function from the set of control 

points to i nt .
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Future work

 Prove the correctness of the second step.

 Generate preconditions and postconditions.

 Prove that some properties can be checked 
statically.

 Extend the propagation algorithm given by Mariela 
Pavlova.

 Formalize it in PVS by extending this work and prove its 
correctness.
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Related work - 1

 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. 
From finite state machines to provably correct Java 
card applets.

 Daan de Jong. Converting Midlet Navigation Graphs 
into JML

 Jesús Ravelo and Erik Poll. Work in progress about 
graph refinement.
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Related work - 2

 Mariela Pavlova. Generation of JML specification for 
Java card applications.

 Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke 
Huisman and Jean-Louis Lanet. Enforcing high-level 
security properties for applets.

 Yoonsik Cheon and Ashaveena Perumendla. 
Specifying and checking method call sequences of 
Java programs.
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The end

Thanks!

Questions?


