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Motivation
I Cache-based attacks are a class of side-channel attacks that are

particularly effective in virtualized or cloud-based environments
I Countermeasure: to use constant-time implementations, i.e. which do

not branch on secrets and do not perform memory accesses that
depend on secrets

I There was no rigorous proof that constant-time implementations are
protected against concurrent cache-attacks in virtualization platforms
with shared cache

I New software mechanism: Stealth memory provisions a small amount of
private cache for programs to carry potentially leaking computations
securely (S-constant-time).

I No rigorous analysis of stealth memory and S-constant-time, and no tool
support for checking if applications are S-constant-time

I To develop a new information-flow analysis that checks if an x86
application executes in constant-time, or in S-constant-time and to prove
that constant-time (resp. S-constant-time) programs do not leak
confidential information through the cache to other operating systems
executing concurrently on virtualization platforms

I To formalize the results using the Coq proof assistant and to demonstrate
the effectiveness of our analyses on widely used implementations of
cryptographic algorithms



Dataflow analysis
Simple example

I Compilers can perform some optimizations based
only on local information

x = a+ b;
x = 5 ∗ 2;

I The first assignment to x is a useless assignment: the
value computed for x is never used

I The expression 5*2 can be computed at compile
time, simplifying the second assignment statement to
x = 10

I Some optimizations require more global information



Dataflow analysis
Motivation

a = 1;
b = 2;
c = 3;
if (...) x = a + 5;
else x = b + 4;
c = x + 1;

I The initial assignment to c (at line 3) is useless, and the expression x + 1
can be simplified to 7

I It is less obvious how a compiler can discover these facts
I To discover these kinds of properties it is used dataflow analysis
I Dataflow analysis is usually performed on the program’s control-flow

graph (CFG)
I The goal is to associate with each program component (each node of

the CFG) information that is guaranteed to hold at that point on all
executions.



Application of data flow analysis
Constant propagation

I Goal: to determine where in the program variables
are guaranteed to have constant values

I More specifically, the information computed for each
CFG node n is a set of pairs, each of the form
(variable, value)

I To have the pair (x , v) at node n means that x is
guaranteed to have value v whenever n is reached
during program execution



Other applications

I Live analysis
I Available expressions
I Reaching definitions
I Common expressions
I (Java) Bytecode verification
I Taint analysis for code injection prevention
I Secure Information flow verification



An informal characterization of (forward) DFP

When we do dataflow analysis "by hand", we look at the
CFG and think about:

1. What information holds at the start of the program

2. When a node n has more than one incoming edge in
the CFG, how to combine the incoming information
(i.e., given the information that holds after each
predecessor of n, how to combine that information to
determine what holds before n)

3. How the execution of each node changes the
information
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More formally

An instance of a DFP includes:
I a CFG

I a domain D of dataflow facts,
I a dataflow fact init (the information true at the start

of the program for forward problems, or at the end of
the program for backward problems),

I an operator u (used to combine incoming
information from multiple predecessors),

I for each CFG node n, a dataflow function fn : D → D
(defines the effect of executing n, also called the
transfer function)
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Constant propagation as a DFP instance

I D = ℘(X × V )

I init = {}
I u = ∩
I if n is not an assignment in CFG, then fn(d) = d,

otherwise (x = e)
1. If the right-hand side e has a variable that is not

constant, then fn(d) = d − (x , ∗)
2. If all right-hand-side variables have constant values,

then the right-hand side of the assignment is
evaluated producing constant-value c, and
fn(d) = d − (x , ∗) ∪ {(x ,c)}



What is a correct solution of a DFP?

I A solution to an instance of a dataflow problem is a
dataflow fact for each node of the given CFG, but

I what does it mean for a solution to be correct, and
I if there is more than one correct solution, how can we

judge whether one is better than another?

I Ideally, we would like the information at a node to
reflect what might happen on all possible paths to
that node.

I This ideal solution is called the meet over all paths
(MOP) solution

I It is not always possible to compute the MOP solution;
we must sometimes settle for a solution that provides
less precise information



The MOP solution

The MOP solution (for a forward problem) for each CFG node n
is defined as follows:

I For every path enter → . . .→ n, compute the dataflow fact
induced by that path

I Combine the computed facts (using the combining
operator, u).

I The result is the MOP solution for node n.



DFP solving using iterative algorithms

Most of the iterative algorithms are variations on the following
algorithm (this version is for forward problems):

(Step 1) (initialize n.afters):
Set enter.after = init. Set all other n.after to T.
(Step 2) (initialize worklist):
Initialize a worklist to contain all CFG nodes except enter and exit
(Step 3) (iterate):
While the worklist is not empty:

Remove a node n from the worklist
Compute n.before by combining all p.after such that p is a pred. of n in the CFG
Compute tmp = fn (n.before)
If (tmp != n.after) then

Set n.after = tmp
Put all of n’s successors on the worklist

T (called top) has the following properties
I for all dataflow facts d, T u d = d.
I for all dataflow functions, fn(T ) = T .



The Lattice model of data flow analysis
Questions to address

I The definition of DFP includes a domain D of dataflow
facts, a dataflow fact init, an operator u and for each
CFG node n, a dataflow function fn : D → D

I Goal: to solve a given instance of the problem by
computing before and after sets for each node of the
CFG.

I With no additional information about D, u and fn, we
can’t say, in general, whether a particular algorithm
for computing the before and after sets works
correctly:

I does the algorithm always halt?
I does it compute the MOP solution?
I if not, how does the computed solution relate to the

MOP solution?



The Lattice model of data flow analysis
Kildall’s framework

I G. Kildall [Kildall 1973] addressed the questions by
putting the following additional requirements:

1. D must be a complete lattice L such that for any
instance of the dataflow problem, L has no infinite
descending chains

2. umust be the lattice’s meet operator
3. fn must be distributive
4. the iterative algorithm must initialize n.after (for all

nodes n other than the enter node) to the lattice’s top
value

I Given these properties, Kildall showed that:
I The iterative algorithm always terminates
I The computed solution is the MOP solution



Language based security

I The goal of language-based security is to provide
enforcement mechanisms for end-to-end security
policies

I In contrast to security models based on access
control, language-based security focuses on
information flow policies that track how sensitive
information is propagated during execution.

I Starting from the seminal work of Volpano and Smith
[VS 1997], type systems have become a prominent
approach for a practical enforcement of information
flow policies



Secure information flow analysis
Basic notions

I The starting point in secure information flow analysis is
the classification of program variables into different
security levels

I The most basic distinction is to classify some variables
as L, meaning low security, public information; and

I other variables as H, meaning high security, private
information

I The security goal is to prevent information in H
variables from being leaked improperly. We need to
prevent information in H variables from flowing to L
variables

I More generally, we might want a lattice of security
levels, and we would wish to ensure that information
flows only upwards in the lattice.

I For example, if L ≤ H, then we would allow flows from
L to L, from H to H, and from L to H, but we would
disallow flows from H to L.



Secure information flow analysis
IIlegal flows

I Let us consider some examples from [DD 1977], assuming that secret:H
and leak:L

I Clearly illegal is an explicit flow leak=secret;

I On the other hand, the following should be legal: secret = leak; as
should leak=76318;

I Also dangerous is an implicit flow:
if ((secret % 2)==0)
leak = 0;
else leak = 1;

This copies the last bit of secret to leak

I Arrays can lead to subtle information leaks. If array a is initially all 0, then
the program
a[secret] = 1;
for (int i = 0; i < a.length; i++) {
if (a[i] == 1)
leak = i;
}

leaks secret



Information flow type systems

I Structured programs

` e : k k ≤ τ(x)
` x := e : τ(x) Direct flows

` e : k ` c1 : k1 ` c2 : k2 k ≤ k1, k2

` if e then c1 else c2 : k
Implicit flows

I Unstructured programs

P(i) = load(x)
i ` st ⇒ τ(x) :: st

P(i) = store(x) k ≤ τ(x)
i ` k :: st ⇒ st

P(i) = ifeq(j) ∀j ∈ region(i), k ≤ se(j)
i ` k :: st ⇒ lift(k , st)



Cache leakage

I Latency between cache hits and misses
I Attacks can be designed to recover cryptographic

keys:
I Tromer et al [TOS 2010], and Gullasch et al [GBK 2011]

show efficient attacks on AES implementations

I In some cases the cryptographic key can be found
without knowledge of either the cipher or plain text

I These attacks are based on the access of look-up
tables: bits of the key can be deduced from the
memory addresses accessed by the victim

Many adversary models: synchronous, access-driven,
trace-based . . .



Example cache attack

1. The attacker fills the cache with its own entries
2. It lets the victim run for a short time
3. The victim will access just a few table entries, which

will replace some of the cache entries
4. The attacker measures the time to access its own

addresses
5. After enough measures, a statistical analysis can be

performed to recover the full key
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Existing Countermeasures

I Some existing countermeasures:
I Do not use the cache
I Flush the cache
I Dedicated cryptographic hardware
I Application level countermeasures

I Constant-time implementation

I Many of them have drawbacks:
I Significant performance overhead
I Specific to some classes of computations
I Difficult to deploy, due to hardware requirements

I “Finding an efficient solution that is application and
architecture independent remains an open
problem”. Tromer, Osvik and Shamir [TOS 2010].



Constant time crypto algorithms

I Constant time algorithms:
I do not branch on secrets
I do not perform memory accesses that depend on

secrets
I There are constant-time implementations of many

cryptographic algorithms:
I AES
I DES
I RSA
I etc

I There was no rigorous proof that constant-time
algorithms are protected to cache-based attacks
when executed in virtualization platforms

I Many cryptographic implementations make array
accesses that depend on secret keys, for efficiency



StealthMem

I StealthMem was presented by Erlingsson and Abadi
in [EA 2007]; and implemented by Kim, Peinado and
Mainar-Ruiz [KPM 2012].

I Mechanism designed to protect a critical region of
memory against cache side-channels in the cloud.

I Modify the hypervisor implementation to guarantee
that stealth pages are never evicted from the cache.

I Benefits:
I Minimal performance overhead
I Compatibility with commodity hardware



StealthMem - Challenges

Does it work?
StealthMem does not provide formal guarantees of
non-leakage of data allocated in stealth memory pages.

Correct usage
StealthMem requires manual modification of application
code, to call the new StealthMem primitives.



Static analysis of constant-time crypto algorithms

I Define a static analysis for enforcing constant-time on
x86 programs

I Derive strong semantical guarantees for the class of
programs accepted by our analysis (eg. no
cache-leakage)

I Analyze realistic C programs, using the CompCert
framework

I Do the analysis at a very low intermediate language,
after all compiler optimizations.



CompCert
X. Leroy, INRIA - Rocquencourt, 2006

I C optimizer compiler developed in Coq
I Formal guarantees of semantic preservation
I Framework to formally reason about program semantics
I Will be used to perform the taint analysis on programs



MachIR Semantics

p[n] = op(op,~r , r ,n′)

(n, ρ, µ) ↪∅−→ (n′, ρ[r 7→ JopK(ρ,~r)], µ)

p[n] = loadς(addr ,~r , r ,n′)
JaddrK(ρ,~r) = vaddr µ[vaddr]ς = v

(n, ρ, µ) ↪
read vaddr−−−−−−−−→ (n′, ρ[r 7→ v ], µ)

p[n] = storeς(addr ,~r , r ,n′)
JaddrK(ρ,~r) = vaddr store(µ, ς, vaddr, ρ(r)) = µ′

(n, ρ, µ) ↪
write vaddr−−−−−−−−−→ (n′, ρ, µ′)



A Type system for constant-time
Generics

I Type-based information flow analysis that checks
whether a MachIR program is constant-time, i.e. its
control flow and its sequence of memory accesses do
not depend on secrets

I To track how dependencies evolve during execution,
the information flow analysis must be able to predict
the set of memory accesses that each instruction will
perform at runtime: Alias analysis

I Information flow type system



A Type system for constant-time
Alias (points-to) type system

alias ::=
| Num numerical value
| Symb(S) points to any cell allocated

for symbol S
| Stack(δ) points to the δth stack cell

AJindexedK(a, [r1; r2])= AJ+K([a(r1); a(r2)])
AJglobal(S)K(a,~r) = Symb(S)
AJstack(δ)K(a, []) = Stack(δ)

= Num otherwise

AJaddrof(addr)K(a,~r) = AJaddrK(a,~r)
AJmoveK(a, [r ]) = a(r)
AJarith(a)K(a,~r) = AJaK(a[~r ])

AJaddrK(A[n],~r) = Symb(S) A[n][r 7→ A[n](S)] ⊆ A[n′]

A ` n : loadς (addr,~r, r, n′)

AJaddrK(A[n],~r) = Stack(δ)} A[n][r 7→ A[n](δ)] ⊆ A[n′]

A ` n : loadς (addr,~r, r, n′)

A[n] ⊆ A[n′]

A ` n : goto(n′)

A[n] ⊆ A[nthen] A[n] ⊆ A[nelse ]

A ` n : cond(c,~r, nthen, nelse)



A Type system for constant-time
Information flow type system

p(n) = op(op,~r , r ,n′)

Xh ` n : τ ⇒ τ [r 7→ τ(~r)]

p(n) = loadς(addr ,~r , r ,n′)
PointsTo(n,addr ,~r) = Symb(S) τ(~r) = Low

Xh ` n : τ ⇒ τ [r 7→ Xh(S)]

p(n) = loadς(addr ,~r , r ,n′) PointsTo(n,addr ,~r) = Stack(δ)
Xh ` n : τ ⇒ τ [r 7→ τ(δ) t · · · t τ(δ + ς − 1)]

p(n) = storeς(addr ,~r , r ,n′)
PointsTo(n,addr ,~r) = Symb(S) τ(~r) = Low τ(r) v Xh(S)

Xh ` n : τ ⇒ τ

p(n) = storeς(addr ,~r , r ,n′) PointsTo(n,addr ,~r) = Stack(δ)
Xh ` n : τ ⇒ τ [δ 7→ τ(r), . . . , δ + ς − 1 7→ τ(r)]

p(n) = goto(n′)
Xh ` n : τ ⇒ τ



Definition of constant-time programs

A program p is constant-time with respect to a set of
variables X0

h , written X0
h ` p, if there exists (Xh, T ) such that

for every S ∈ X0
h , Xh(S) = High and for all nodes n and all

its successors n′, there exists τ such that

Xh ` n : T (n)⇒ τ ∧ τ v T (n′)

where v is the natural lifting of v from L to types.

We automatically infer Xh and T using Kildall’s algorithm



Information flow type system for S-constant time

p(n) = loadς(addr ,~r , r ,n′)
PointsTo(n,addr ,~r) = Symb(S) τ(~r) = High =⇒ S ∈ Xs

Xs,Xh ` n : τ ⇒ τ [r 7→ τ(~r) t Xh(S)]

p(n) = storeς(addr ,~r , r ,n′) PointsTo(n,addr ,~r) = Symb(S)
τ(~r) = High =⇒ S ∈ Xs τ(~r) t τ(r) v Xh(S)

Xs,Xh ` n : τ ⇒ τ



Soundness of Constant-Time Type System

I Establishes a non-interference property based on the
semantics of MachIR programs

I Based on an equivalence relation between states
(s ∼Xh,τ s′).

I Extend the equivalence to execution traces (θ ∼Xh,T θ
′)

I We can prove that all programs that type-check have the
same control flow and memory accesses:

X0
h ` p ∧ s ∼Xh,T (pc0) s′ =⇒ θ ∼Xh,T θ

′



Automatic vulnerability analysis of
crypto-algorithms

We successfully evaluate our approach based on a representative set of
off-the-shelf implementations of cryptographic algorithms, including:

I the PolarSSL implementations of AES, DES, Blowfish and RC4, and the
ECRYPT implementation of SNOW, which are vulnerable to cache-based
attacks on standard platforms;

I oblivious cryptographic algorithms, including SHA256, TEA and Salsa20.

EXAMPLE LOC # ADDRESSES SIZE (KB)
DES 836 10 2

Blowfish 279 1 4
AES 744 5 4
RC4 164 1 0.25

Snow 757 6 6
Salsa20 1077 0 0

TEA 70 0 0
SHA256 419 0 0



Conclusions
I Constant-time cryptography is an oft advocated

solution against cache-based attacks. We have:
I developed an automated analyzer for constant-time

cryptography
I given the first formal proof that constant-time

programs are indeed protected against concurrent
cache-based attacks.

I We have extended our analysis to the setting of
stealth memory:

I we have developed the first formal security analysis of
stealth memory.

I our results have been formalized in the Coq proof
assistant.

I Our analyses have been validated experimentally on
a representative set of algorithms.

I The paper System-level non-interference for
constant-time cryptography was accepted in ACM
CCS 2014
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