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Motivation for Off-line Signature Verification

Today’s society need for personal authentication has made
automatic personal verification to be considered as a
fundamental task in many daily applications.

Signature verification is the most popular method of
identity verification.

Financial and administrative institutions recognize
signatures as a legal means of verifying an individual’s
identity.

No invasive methods of collecting the signature are
needed.

The use of signatures is familiar to people in their
everyday’s life.
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Contributions

A new feature extraction approach for off-line signature
verification based on a circular grid is presented.

Graphometric features used in the rectangular grid
segmentation approach are adapted to this new grid
geometry.

A Support Vector Machine (SVM) based classifier scheme
is used for classification tasks and a comparison between
the rectangular and the circular grid approaches is
performed.
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Circular Grid Feature Extraction Approach

A circular chart enclosing the signature is divided in N identical
sectors, and graphometric features are computed for each sector. The
circular grid is placed so that the center of the grid matches the
center of mass of the binary image of the signature.

Fig. 1: Features extracted from segmented sectors with the circular grid approach: (a) Segmented sector

being analyzed; (b) Pixel Density Distribution; (c) Gravity Center Distance; (d) Gravity Center Angle.
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Circular Grid Feature Extraction Approach (cont.)

Some of the graphometric features used in rectangular grid
segmentation are adapted to the new grid structure. Three
static graphometric features are considered:

Pixel density distribution

xPDi = number of black pixels inside the sector
total number of pixels inside the sector i = 1, ..., N

Gravity center distance

xDGCi = dGCi
R i = 1, ..., N

Gravity center angle

xAGCi = αGCi
αmax

, being αmax = 2π
N i = 1, ..., N
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Circular Grid Feature Extraction Approach (cont.)

Finally, the feature vector xsign is composed of the features
calculated for each of the N angular sectors in which the
signature image is divided, i.e.

xsign = [xTPD, x
T
DGC , x

T
AGC ]T ,

where

xPD = [xPD1 , xPD2 , · · · , xPDN ]T ,
xDGC = [xDGC1 , xDGC2 , · · · , xDGCN ]T ,
xAGC = [xAGC1 , xAGC2 , · · · , xAGCN ]T .
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SVM-based Classifier

SVM is a quite recent technique of statistical learning
theory developed by Vapnik.
In recent years, SVM-based classifiers have shown a
promising performance in Automatic Signature
Verification.

Separable Case

Fig. 2: Separable classification problem example: (a) Possible separating hyperplanes; (b) Selection of a

unique hyperplane maximizing the distance between the nearest point of each class; (c) Optimal separating

hyperplane that maximizes the margin.
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SVM-based Classifier (cont.)

Consider the training set {xk, yk}nk=1, with input data xk ∈ Rd,
output data yk ∈ {−1,+1} and suppose that all the training data
satisfy the following constraints:

ωTxk + b ≥ +1, for yk = +1
ωTxk + b ≤ −1, for yk = −1

Then the classifier takes the form

yk[ωTxk + b]− 1 ≥ 0, k = 1, ..., n.

where ω is normal to the hyperplane, |b|/‖ω‖2 is the perpendicular

distance from the hyperplane to the origin and ‖ω‖2 is the Euclidean

norm of ω.
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SVM-based Classifier (cont.)

The margin M, in this case, equals 2/‖ω‖2 and the problem is solved
by minimizing ‖ω‖2 subject to the restrictions imposed by the data,
i.e., by solving the following optimization problem

min
ω,b

JP (ω) = 1
2ω

Tω

s.t. yk[ωTxk + b] ≥ 1, k = 1, ..., n.
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SVM-based Classifier (cont.)

Non-Separable Case

Fig. 3: Non-separable classification problem example.

In the non-separable case, one cannot avoid misclassifications. Then,
slack variables have to be included in the formulation of the problem

yk[ωTxk + b] ≥ 1− ξk, k = 1, ..., n.
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SVM-based Classifier (cont.)

In this case, the optimization problem becomes

min
ω,b,ξ

JP (ω, ξ) = 1
2ω

Tω + c
∑n
k=1 ξk

s.t. yk[ωTxk + b] ≥ 1− ξk, k = 1, ..., n
ξk ≥ 0, k = 1, ..., n.
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SVM-based Classifier (cont.)

Non-linear Case
The extension from the linear to the nonlinear case is straightforward.
The linear separating hyperplane is calculated in a higher dimensional
feature space where the input data lie after being mapped by a
nonlinear mapping ϕ(x). Then, the classifier in the case of nonlinear
data is

yk[ωTϕ(xk) + b] ≥ 1− ξk, k = 1, ..., n.

No explicit construction of the nonlinear mapping ϕ(x) is needed, by
applying the so-called kernel trick. That is, by defining a Kernel as
K(xk, x`) = ϕ(xk)Tϕ(x`) for k, ` = 1, ..., n. The SVM solution can
be found by solving the following optimization problem

min
ω,b,ξ

JP (ω, ξ) = 1
2ω

Tω + c
∑n
k=1 ξk

s.t. yk[ωTϕ(xk) + b] ≥ 1− ξk, k = 1, ..., n
ξk ≥ 0, k = 1, ..., n.
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SVM-based Classifier (cont.)

The SVM classifier takes the following form

y(x) = sign[
∑n
k=1 αkykK(x, xk) + b].

Different Kernels have been used in the literature to solve pattern
recognition problems. Linear, Polynomial and Radial Basis Functions
(RBF) Kernels are among the most popular in the bibliography

Klinear(xk, x`) = xTk x`,

Kpolynomial(xk, x`) = (1 + xTk x`)
d,

KRBF (xk, x`) = exp(− ‖ xk − x` ‖22 /σ2).
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Experiments and Results

The aim of a signature verification system is to accurately distinguish
between two categories of signatures, namely, genuine and forged
signatures.

Types of errors:

False Rejection Rate (FRR)
False Aceptance Rate (FAR)

Types of forgeries:

random forgery
simple forgery
skilled forgery

Fig. 4: An original signature instance and its different types of forgeries. (a) Original signature; (b) Random

forgery; (c) Simple forgery; (d) Skilled forgery.
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Experiments and Results (cont.)

The Signature Database1 used includes 160 writers with:

24 genuine signatures per writer

30 forged signatures per writer (simple and skilled forgeries)

An SVM model was trained for each writer
Training set:

genuine samples: 14 samples per writer

false samples (random forgeries): 5x159=795 samples per writer

Neither simple nor skilled forgeries were include in the training subset
of false samples.

1
Vargas, F., Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Off-line Handwritten Signature GPDS-960

Corpus. In: IAPR 9th International Conference on Document Analysis and Recognition, Curitiba, Brazil,

764–768 (2007)
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Experiments and Results (cont.)

Experiments with the circular grid approach were carried out with
different number of divisions of the grid and different types of
kernels:

Different number of grid divisions N = 8, N = 16, N = 32,
N = 64 and N = 128.

Different types of kernels: linear, polynomial and RBF.

Experiments with the same number of divisions and the same types
of kernels were carried out with the rectangular grid approach in
order to compare both feature extraction techniques.

In order to obtain reliable results, Monte Carlo techniques were used.
The experiments were carried out randomly resampling the dataset

into training and testing sets for each one of the writers. The
resampling process has been repeated 200 times.
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Experiments and Results (cont.)

FRR

Fig. 5: FRR for different number of divisions and kernels, for the circular (top) and the rectangular (bottom)

grid approaches.
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Experiments and Results (cont.)

FAR for simple and skilled forgeries

Fig. 6: FAR (simple and skilled forgeries) for different number of divisions and kernels, for the circular (top)

and the rectangular (bottom) grid approaches.
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Experiments and Results (cont.)

FAR for random forgeries

Fig. 7: FAR (random forgeries) for different number of divisions and kernels, for the circular (top) and the

rectangular (bottom) grid approaches.
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Experiments and Results (cont.)

Comparison between the best results reached with the circular and
rectangular grid approaches:

Circular Grid Rectangular Grid

N=16, Poly kernel (degree 3) N=128, RBF kernel (σ2 = 100)

Feature Vect. Dim.=48 Feature Vect. Dim.=384

FRR 23.9147% 25.7678%

FAR (simple & skilled forgeries) 2.4314% 17.9528%

FAR (random forgeries) 0.0867% 0.0321%

EER 8.8109% 14.5842%

Table 1: Best results for circular and rectangular grid approaches.
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Experiments and Results (cont.)

The statistical significance of the obtained results can be inferred
from the box plots of the FRR, FAR for simple and skilled forgeries
and FAR for random forgeries for each of the 160 writers in the
database.

Fig. 8: Box plots for 20 writers in the database. Left column: circular grid. Right column: rectangular grid.

Top: FRR. Middle: FAR for simple and skilled forgeries. Bottom: FAR for random forgeries.

XIII JCC (Rosario, Argentina) October 28-29, 2010 22 / 28



XIII JCC

Outline

Motivation

Contributions

Feature
Extraction

SVM-based
Classifier

Experiments
and Results

Conclusions

Future Work

References

Experiments and Results (cont.)

Comparison between the results obtained with the proposed approach
and other approaches proposed in the literature.

FRR FAR FAR EER

(simple and (random forgeries)

skilled forgeries)

Proposed approach 23.9147% 2.4314% 0.0867% 8.8109%

Ferrer et. al. [4] 14.1% 12.6% 13.35%

Vargas et. al. [13] 10.01% 14.66% 12.33%

Table 2: Results obtained with the proposed approach and other approaches proposed in the literature.

XIII JCC (Rosario, Argentina) October 28-29, 2010 23 / 28



XIII JCC

Outline

Motivation

Contributions

Feature
Extraction

SVM-based
Classifier

Experiments
and Results

Conclusions

Future Work

References

Conclusions

A new feature extraction approach based on a circular grid
has been presented for off-line signature verification.

A comparison between the circular and the rectangular
grid based feature extraction approaches has been
performed over a SVM-based classification scheme.

The classification results, quantified by the FRR and the
FAR for simple and skilled, and random forgeries, using
the proposed features have shown improvements with
respect to the ones based on features extracted from
rectangular grids.

The low FAR obtained indicates an improvement in the
capability of the system to highlight the interpersonal
variability.
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Future Work

In order to reduce the FRR, that is to increment the
verification process capability to absorb the intrapersonal
variability, possible strategies are:

Introduce new graphometric features (specially dynamic
ones).
Modify the ratio between genuine and false samples used
for training. It is likely that reducing the number of
random forgeries used to train the false class, will result in
an improvement in the FRR value.

Increase the database in order to have more data available
to perform the statistic tests.
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